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Inverse boundary design of square enclosures with natural convection
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Abstract

An optimization technique is applied to design of heat transfer systems in which the natural convection is important. The inverse methodology
is employed to estimate the unknown strengths of heaters on the heater surface of a square cavity with free convection from the knowledge of the
desired temperature and heat flux distributions over a given design surface. The direct and the sensitivity problems are solved by finite volume
method. The conjugate gradient method is used for minimization of an objective function, which is expressed by the sum of square residuals
between estimated and desired heat fluxes over the design surface. The performance and accuracy of the present method for solving inverse
convection heat transfer problems is evaluated by comparing the results with a benchmark problem and a numerical experiment.
© 2008 Elsevier Masson SAS. All rights reserved.

Keywords: Inverse boundary design; Optimization; Convection
1. Introduction

Design of thermal processing systems involves satisfying de-
sired conditions over some part of the system where the thermal
processing takes place. For instance, in order to design an air
drying system, where the convection is the important mode of
heat transfer, the goal of the design may be producing the uni-
form quality over all parts of the product surface. In order to
meet the design goal, both the temperature and the heat flux
require having uniform distribution over the product surface. In
conventional design, namely “forward design”, where the math-
ematical formulation relies on the knowledge of one and only
one condition on each element of the system, the designer needs
to guess one thermal condition on the unconstrained elements
and, for the uniform temperature on the process material, check
the corresponding heat flux. If it is not uniform, a new guess is
made, and the calculations are rerun. This trial-and-error pro-
cedure can be cumbersome to deal with, and a great number
of iterations may be necessary to achieve a satisfactory config-
uration. This can be especially undesirable if each calculation
requires a large computational time. So-called “inverse design”,
on the other hand, involves the solution of the design problem
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by using all available information prescribed for the design en-
vironment to provide a solution for the necessary input.

The inverse heat transfer problems have received much at-
tention in the past 30 years. There have been many studies in the
field mostly on “inverse measurement problems”. Many stud-
ies of the inverse measurement problems with convection have
been reported. An inverse forced convection problem in a fully
developed channel flow has been reported in [1]. In the case
of natural convection problems, the fluid flow is induced due to
the density changes. Hence, for small variations of temperature,
the momentum and energy equations are coupled to each other
through Boussinesq approximation. Therefore, the inverse nat-
ural convection problems are more difficult than that for other
modes of heat transfer to solve, and very few papers devoted
to inverse natural convection heat transfer have been published.
An inverse problem of two-dimensional natural convection flow
for determining wall heat flux from temperature measurement
within the flow has been investigated in [2–4]. A steady laminar
inverse natural convection in a vertical channel, where the heat
flux at one wall is unknown while the temperature on the oppo-
site insulated wall is given, has been solved in [5]. A compre-
hensive study of inverse convection problems has been reported
in [6].

Design problems, on the other hand, do not require any
experimental measurements. However, the objective of design
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Nomenclature

d direction of descent
f objective function
g∗

i gravitational acceleration in direction i . . . . m/s2

L∗ length of the square cavity . . . . . . . . . . . . . . . . . . . m
J sensitivity coefficient
M number of heaters on the heater surface
N number of nodes on the design surface
Nu0 average Nusselt number on the boundary at x1 = 0
P non-dimensional pressure
Pr Prandtl number
q non-dimensional heat flux in direct problem
Rai Rayleigh number in direction i

T non-dimensional temperature
ui non-dimensional velocity in direction i (u∗

i L
∗
1/υ

∗)
xi non-dimensional position in direction i (x∗

i /L∗
1)

Greek symbols

α∗ thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . m2/s
β∗ thermal expansion coefficient . . . . . . . . . . . . . . K−1

ϕ non-dimensional nodal estimated heat flux
γ step size
Γ artificial non-dimensional temperature in sensitivity

problem

η non-dimensional path length of the design surface
λ conjugate coefficient
Θ artificial non-dimensional heat flux in sensitivity

problem
ρ∗ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

υ∗ kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . m2/s
ξ non-dimensional path length of the heater surface
ψ non-dimensional nodal desired heat flux over design

surface

Subscripts

0 reference
d desired, design
e estimated
h heater
i, j direction
m heater node number
n design node number

Superscript

∗ dimensional quantity
k iteration number
m due to mth set of boundary conditions for sensitivity

problem
problems is to estimate suitable conditions to be imposed on
some parts of the boundary or in the medium, so that desired
heat flux and temperature distributions are attained on some part
of the boundary, namely the design surface. This configuration
and set of conditions are representative of industrial drying and
processing ovens. More recently, the “inverse design problems”
have been attracting interest, especially in the field of radiative
heat transfer or combined modes with radiation. Inverse design
problems are classified as inverse boundary, inverse heat source,
and shape determination problems. In the first type of the prob-
lem, the objective is to find a set of heaters over some part of
the boundary, namely the heater surface in such a way that the
desired temperature and heat flux distributions are recovered
over the design surface [7–19]. A boundary control problem for
finding the temperature distribution over the design surface to
reconstruct the desired temperature distribution inside the cav-
ity has been presented in [20]. An inverse algorithm to estimate
the cooling heat flux for obtaining the desired solid–liquid in-
terface in both space and time has been reported in [21]. The
second type of the design problems consists of estimating a
suitable heat source distribution throughout some part of the
medium to achieve a uniform distribution of temperature and
heat flux over the design surface [22–25]. Finally, the third type
of the inverse design problems is concerned as finding the op-
timum geometry to meet the desired conditions on the design
surface [26–29].

To the knowledge of the authors of this paper, none of the
previous researchers work on inverse boundary design of en-
closures with natural convection. In the present work, we deal
with the inverse design natural convection problem of estimat-
ing the strengths of heaters on the heater surface to produce the
desired conditions over the design surface in a square enclo-
sure. This enclosure may be considered as an air dryer, where
the product surface is considered as the design surface. Inverse
design for natural convection flows can also be of great inter-
est in the building domain, for energy control purposes as well
as for improvement of living and working conditions. Since the
natural convection is induced due to density changes, the design
problem is more dependent on the location of the heater and the
design surfaces; hence the design problem for the case of natu-
ral convection is more complicated than that for other modes of
heat transfer. The direct problem of steady natural convection
is solved by the finite volume method. The inverse problem is
posed as an optimization problem through minimization of an
objective function which is defined as the sum of square devia-
tions between estimated and desired heat fluxes over the design
surface. The conjugate gradient method (CGM) is used to solve
the inverse problem through an iterative procedure. An efficient
method is used to approximate the sensitivity coefficients be-
fore starting the inverse procedure, in which the differentiation
is applied on temperature field, and the velocity components are
considered due to the thermal boundary conditions imposed in
the sensitivity problem. First the accuracy of the direct solution
is verified by comparing the results with a benchmark problem
and the inverse method is used to recover the direct solution.
Then the performance of the inverse method is examined by
some numerical examples.
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Fig. 1. Schematic shape of a two-dimensional square cavity and boundary con-
ditions for the inverse problem.

2. Description of the inverse design problem

Consider a two-dimensional square cavity as depicted in
Fig. 1. One boundary condition (temperature or heat flux) is
specified over each surface of the cavity, except for the design
surface, where both the boundary conditions are specified and
the heater surface, where none of the conditions are known. The
flow is assumed to be laminar and steady state. All physical
properties are taken as constant, except the density to allow nat-
ural convection. The aim of the inverse design problem is to find
the set of heaters, {ϕh,1, ϕh,2, . . . , ϕh,M }, over the heater surface
to produce both pre-specified boundary conditions, T (η), q(η),
over the design surface.

3. Direct problem

Convection heat transfer problem is governed by a system
of non-linear partial differential equations, namely the continu-
ity, momentum, and energy equations. We consider the case of
natural convection problems with small variations of tempera-
ture. Hence the energy equation is coupled with the momentum
equation through Boussinesq approximation

ρ∗ = ρ∗
0

[
1 − β∗(T ∗ − T ∗

0 )
]

(1)

By defining the following non-dimensional variables,

P = p∗ + ρ∗
0g∗

2x∗
2 − p∗

0

ρ∗
0 (υ∗/L∗)2

(2a)

T = T ∗ − T ∗
0

�T ∗ (2b)

Rai = g∗
i β∗�T ∗L∗3

α∗υ∗ , i = 1,2 (2c)

Pr = υ∗
(2d)
α∗
where the superscript asterisk means the dimensional variables,
the non-dimensional form of governing equations can be repre-
sented by

ui,i = 0, i = 1,2 (3a)

ujui,j = −P,i + ui,jj + RaiPr−1T , i, j = 1,2 (3b)

ujT,j = Pr−1T,jj , i, j = 1,2 (3c)

The no-slip condition (ui = 0, i = 1,2) is considered on all sur-
faces. The thermal boundary conditions are defined as

qh(ξ) =
M∑

m=1

ϕh,mδ(ξ − ξm)

over heater surface (4a)

Td(η) ≡ specified

over design surface (4b)

T (xi) or q(xi) ≡ specified

over other surfaces (4c)

where q(xi) = ∂T (xi)/∂xj and δ is the Dirac delta function,
defined by

δ(ξ − ξm) =
{

1, ξ = ξm

0, ξ �= ξm
(5)

The set of Eqs. (3) with boundary conditions defined by Eqs. (4)
provide a complete mathematical formulation of the prob-
lem. The mass, momentum, and energy equations are solved
by a finite-volume method through an approach called SIM-
PLER (Semi-Implicit Method for Pressure Linked Equations
Revised). The method is described in detail by Patankar [30]
and will not be repeated.

4. Inverse problem

For the inverse problem considered here, the desired heat
flux distribution over the design surface, qd(η), is available for
the analysis, and the heat flux distribution over the heater sur-
face, qh(ξ) is regarded as unknown. The desired and estimated
heat flux distributions over the design surface can be expressed
as

qd(η) =
N∑

n=1

ψnδ(η − ηn) (6a)

qe(η) =
N∑

n=1

ϕe,nδ(η − ηn) (6b)

The solution of the inverse problem is based on the minimiza-
tion of the objective function given by:

f =
N∑

n=1

(ψn − ϕe,n)
2 (7)

The minimization procedure is performed using the conjugate
gradient method. The CGM is an iterative procedure in which at
each iteration a suitable step size, γ k , is taken along a direction
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of descent, dm, in order to minimize the objective function, so
that

ϕk+1
h,m = ϕk

h,m + γ kdk
m (8)

where the superscript k is the iteration number. The direction
of descent can be determined as a conjugation of the gradient
direction, ∇f , and the direction of descent from the previous
iteration as follows:

dk
m = ∇f k

m + λkdk−1
m (9)

where λ is the conjugation coefficient given by [31]

λk =
∑M

m=1(∇f k
m)2∑M

m=1(∇f k−1
m )2

with λ0 = 0 (10)

Here, ∇fm is the mth component of the gradient direction. The
gradient direction is determined by differentiating Eq. (7) with
respect to the unknown strengths of the heaters, ϕh,m

∇f k
m = −2

N∑
n=1

Jnm

(
ψn − ϕk

e,n

)
(11)

where Jmn is the element of sensitivity matrix (or Jacobian)
matrix. The elements of the sensitivity matrix are

Jnm = ∂ϕe,n/∂ϕh,m (12)

The estimated heat fluxes, ϕk
e,n, can be linearized with a Taylor

series expansion and then the minimization with respect to step
size, γ k , is performed to yield the following expression for the
step size

γ k =
∑M

m=1
∑N

n=1(Jnmdk
m)(ϕk

e,n − ψn)∑M
m=1

∑N
n=1(Jnmdk

m)(Jnmdk
m)

(13)

5. Sensitivity problem

To minimize the objective function given by Eq. (7), we
need to calculate the components of the sensitivity matrix, Jnm,
defined by Eq. (12). The sensitivity problem is obtained by dif-
ferentiating the direct problem given by the set of Eqs. (3) with
respect to the nodal heat fluxes over the heater surface, ϕh,m’s ,
from which we can show that

um
i,i = 0, i = 1,2, m = 1, . . . ,M (14a)

um
j um

i,j = −P m
,i + um

i,jj + RaiPr−1Γ m

i, j = 1,2, m = 1, . . . ,M (14b)

um
j Γ m

j = Pr−1Γ m
,jj

j = 1,2, m = 1, . . . ,M (14c)

where um
i and P m are the velocity component and the pressure

of flow induced due to the mth set of boundary conditions, re-
spectively, and Γ m = ∂T /∂ϕh,m is the artificial temperature in
the sensitivity problem. The no-slip condition for the sensitiv-
ity problem is expressed by um

i = 0, i = 1,2, on each surface
element. Differentiating the thermal boundary conditions with
respect to ϕh,m leads to the thermal boundary conditions for the
sensitivity problem
Fig. 2. Schematic shape of a two-dimensional square cavity and mth set of
boundary conditions for the sensitivity problem.

Table 1
Comparison of the results by the direct solution and the benchmark problem

Ra2 103 104 105

Benchmark Direct Benchmark Direct Benchmark Direct

Mesh size 0.05 0.04 0.0263
u1,max 3.649 3.660 16.178 16.172 34.73 35.02
x1,max 0.813 0.813 0.823 0.823 0.855 0.855
u2,max 3.697 3.700 19.617 19.562 68.59 68.93
x2,max 0.178 0.178 0.119 0.119 0.066 0.066
Nu0 1.117 1.120 2.238 2.211 4.509 4.526

Θm(ξ) = δ(ξ − ξm), m = 1, . . . ,M

over heater surface (15a)

Γ m(η) = 0, m = 1, . . . ,M

over design surface (15b)

Γ m(xi) = 0, i = 1,2,m = 1, . . . ,M

over temperature-specified surfaces (15c)

Θm(xi) = 0, i = 1,2,m = 1, . . . ,M

over heat flux-specified surfaces (15d)

Here, Θm = ∂q/∂ϕh,m is the artificial heat flux over the walls
of the enclosure in the sensitivity problem. Fig. 2 shows the
schematic shape for solving the sensitivity problem for mth set
of boundary conditions. The solution procedure for the set of
Eqs. (14) is similar to that for the set of Eqs. (3). After solving
the boundary value problem expressed by Eqs. (14) for mth set
of boundary conditions defined by Eqs. (15), the artificial nodal
heat fluxes over the design surface obtained by the sensitivity
problem are in fact the components of the mth column in the
sensitivity matrix.

6. Computational algorithm

The computational procedure for the inverse problem is
summarized as follows:
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(a) (b)

Fig. 3. Square cavity of the benchmark problem with Pr = 0.71 and insulated top and bottom walls: (a) direct problem, (b) inverse problem.

(a) (b)

Fig. 4. The comparison of the direct solutions with the inverse solutions over (a) the design surface (left wall) and (b) the heater surface (right wall).
Fig. 5. Comparison of temperature profiles obtained by the inverse solution with
uniform temperature Thot over the hot surface.

Step 1. Solve the set of Eqs. (14)–(15) for m = 1, . . . ,M , and
compute the artificial nodal heat fluxes over the design
surface as the columns of the sensitivity matrix.

Step 2. Set k = 0 and assume a set of heaters over the heater
surface, qh(ξ).

Step 3. Solve the direct problem given by Eqs. (3)–(4) and
compute the estimated heat fluxes over the design sur-
face, qe(η).

Step 4. Calculate the objective function f given by Eq. (7). Ter-
minate the iteration procedure if the objective function
is less than a small value. Otherwise go to Step 5.

Step 5. Compute the gradient direction,∇f , from Eq. (11),
then compute the conjugate coefficient, λk , from
Eq. (10).

Step 6. Compute the direction of descent,dk , from Eq. (9).
Step 7. Compute the search step size, γ k , from Eq. (13).
Step 8. Compute a new set of heaters over the heater surface,

ϕk+1
h,m , from Eq. (8).

Step 9. Replace k by k + 1 and go back to Step 3.
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(a) (b)

Fig. 6. The sensitivity coefficients for (a) Ra2 = 103, (b) Ra2 = 105.
7. Results and discussion

7.1. Benchmark problem

In order to show the accuracy of the direct solution for solv-
ing the convective heat transfer, the direct solution is verified
by comparing the results with a benchmark problem.

The solution of laminar natural convection of air in a square
cavity has been presented by De Vahl Davis [32]. The prob-
lem being considered is that of the two-dimensional flow of a
Boussinesq fluid with Pr = 0.71 in a square cavity. The hori-
zontal walls are insulated, while the vertical sides are at uni-
form temperatures of Thot = 1 and Tcold = 0, where T ∗

0 = T ∗
cold

and �T ∗ = T ∗
hot − T ∗

cold. Fig. 3(a) shows the geometry and the
boundary conditions of the benchmark problem. Now, the direct
solutions of this problem are obtained at three different values
of Ra2. Table 1 shows the comparison between the results ob-
tained by the direct solution and the benchmark problem. As
seen, the results obtained by the direct problem are in good
agreement with those obtained by the benchmark problem.

We now proceed to recover the direct solution by the in-
verse method. For instance, consider the natural convection in a
square cavity with insulated horizontal walls, and pre-specified
desired uniform temperature, Td = Tcold = 0, and the desired
heat flux distribution, qd(η) = qcold(y), over the right wall as
the design surface. The inverse problem is described schemat-
ically in Fig. 3(b). First the desired temperature distribution
from the direct solution is imposed on the design surface. Then
the goal of the design problem is to find the unknown heater
strengths over the heater surface (left wall) in order to produce
the desired heat flux profile over the design surface (right wall).

Fig. 4(a) shows the comparison of estimated heat flux distri-
butions obtained by the inverse solution over the design surface
with those obtained by the direct solution, for different values
of Ra2. As seen, the heat flux distribution over the design sur-
face is well recovered by the inverse method and the maximum
error is less than 1%. The comparison of heat flux profiles over
the heater surface for three values of Ra2, obtained by the direct
Fig. 7. Schematic shape of a square cavity and boundary conditions for the
example problem.

Table 2
Specifications of the design problems

Case Ra2 Lh Ld Mesh size qd

1 103 1.0 0.3 0.0500 2.00
2 104 0.5 0.3 0.0400 4.45
3 105 0.2 0.3 0.0263 6.90

and the inverse solutions, is shown in Fig. 4(b). The heat flux
profiles obtained by the inverse solution over the heater surface
show small deviations from the heat flux distributions inserted
over the left wall of the direct solution. However, it must be
noted that the aim of the inverse design problem is not recov-
ering the temperature or heat flux distribution over the heater
surface, but it is recovering the temperature and heat flux dis-
tributions as pre-specified profiles over the design surface by
imposing a heater setting on the heater surface. Fig. 5 shows the
comparison of the temperature profiles obtained by the inverse
solution with uniform temperature Thot over the hot surface.
The sensitivity magnitudes for Ra2 = 103, 105 are shown in
Fig. 6 (a), (b).
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(a) (b)

Fig. 8. Heat flux distribution for case 1 in Table 2, over (a) the design surface and (b) the heater surface.

(a) (b)

Fig. 9. Heat flux distribution for case 2 in Table 2, over (a) the design surface and (b) the heater surface.

(a) (b)

Fig. 10. Heat flux distribution for case 3 in Table 2, over (a) the design surface and (b) the heater surface.
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Fig. 11. The comparison of the estimated relative errors over the design surface
for three cases shown in Table 2.

Table 3
The magnitudes of maximum relative error, root mean square, number of itera-
tions and objective functions for three cases described in Table 2

Case Ra2 ηmax Erel,max
(%)

Erms
(%)

Number of
iterations

Objective
function (f )

1 103 0.0277 3.49 1.66 20 5.97 × 10−3

2 104 0.0209 3.56 2.25 20 8.05 × 10−2

3 105 0.0125 6.23 3.42 20 6.25 × 10−1

7.2. Example problem

Consider the natural convection in a square enclosure with
Pr = 1.0 and Thot = 0.5 as shown in Fig. 7. The specifications
of the design problems are shown in Table 2. The design sur-
face is maintained at Td = Tcold = −0.5. The goal of the design
problem is to find the heat flux distribution over the heater sur-
face, qh(ξ), to produce a uniform heat flux distribution over the
design surface, qd .

Two criteria for measuring the error are the relative error and
the root mean square error which are defined as

Erel,n = (ψn − ϕe,n)/ψn × 100 (16)

Erms =
{

1

N

N∑
n=1

[
(ψn − ϕe,n)/ψn × 100

]2

}1/2

(17)

The relative error measures the deviation between desired and
estimated values on each node, whereas the root mean square
error measures the deviation between desired and estimated val-
ues over entire extent of the design surface.

The estimated heat flux profiles over design and heater sur-
faces are shown in Figs. 8–10 for the cases described in Table 2.
As seen, the desired conditions are well recovered by the in-
verse solution. The comparison of the estimated relative errors
over the design surface for three cases described in Table 2 is
shown in Fig. 11. Table 3 shows the values and the positions of
the maximum relative error obtained by the inverse solution for
(a)

(b)

(c)

Fig. 12. The isotherms for the example problem described in Fig. 10, for
(a) Ra2 = 103, (b) Ra2 = 104 and (c) Ra2 = 105.
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three cases shown in Table 2. In addition, the number of iter-
ations for the inverse procedure and the final values of the ob-
jective function are shown in Table 3. Although the magnitudes
of the maximum relative error, Erel,max, are relatively large, the
values of the root mean square error, Erms, for all cases are ac-
ceptable for engineering applications. The isotherms for three
cases described in Table 2 are shown in Fig. 12 (a)–(c). As seen,
the isotherms near the design surface tend to be flat, therefore,
the heat flux distributions over the design surface tend to be
uniform.

8. Conclusion

This article overviewed the inverse boundary design of a
square enclosure with natural convection for estimation of heat
flux distribution over the heater surface to produce both spec-
ified boundary conditions over the design surface. The direct
problem for solving the natural convection in the square cavities
was solved by the finite volume method. The conjugate gradi-
ent method was used to minimize the objective function. The
sensitivity matrix was determined by solving a set of bound-
ary value problems which were obtained by differentiation of
direct problem with respect to the nodal heat fluxes over the
heater surface. The effect of Rayleigh number was investigated
by comparing the results with a benchmark problem. An exam-
ple problem was considered to show the ability of the inverse
method to boundary design of a square cavity.
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